General Information

SENERAL	CI	2
IENERAL		Z

GI-2 GENERAL INFORMATION

GENERAL

FUNDAMENTAL PROCEDURES

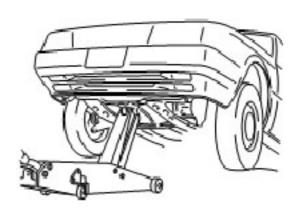
NOTICES, CAUTIONS AND WARNINGS

As you read through the various procedures, you will en counter Notices, Cautions and Warnings. Each one is there for a specific purpose. Notices give you added infor mation that will assist you in completing a particular proce dure. Cautions prevent you from making an error that could damage the vehicle. Warnings remind you to be especially careful in specific areas where carelessness can cause personal injury.

The following items contain general procedures you should always follow when working on a vehicle:

PROTECTION OF VEHICLE

Always cover fenders, seats, and floor areas before starting work. Operate the engine only in a well-ventilated area to avoid carbon monoxide poisoning.



A WORD ABOUT SAFETY

The following precautions must be followed when jacking up the vehicle:

- 1.Block the wheels.
- 2.Use only the specified jacking positions.
- 3. Support the vehicle with safety stands.

The engine compartment must be clear of tools and people before starting the engine.

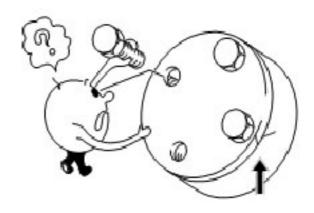
PREPARATION OF TOOLS AND MEASURING EQUIPMENT

All necessary tools and measuring equipment should be available before starting any work.

GI-3 GENERAL INFORMATION

SPECIAL SERVICE TOOLS (SST'S)

Use special service tools when they are required. SST's can be found under "preparation" prior to any procedure requiring them.


REMOVAL OF PARTS

Begin work only after first learning which parts and subassemblies must be removed and disassembled for replacement or repair.

DISASSEMBLY

If the disassembly procedure is complex, requiring many parts to be disassembled, all parts should be disassembled in a way that will not affect their performance or external appearance. Additionally, these parts should be identified so that reassembly can be done easily and efficiently.

INSPECTION OF PARTS

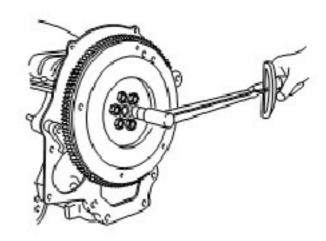
When removed, each part should be carefully inspected for malfunction, deformations, damage, or other problems.

GI-4 GENERAL INFORMATION

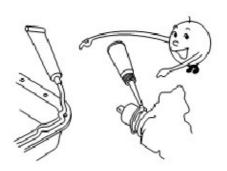
ARRANGEMENT OF PARTS

All disassembled parts should be carefully arranged for reassembly. Separate or otherwise identify the parts to be replaced from those that will be reused.

CLEANING PARTS FOR REUSE

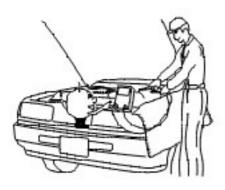

All parts that will be reused should be carefully and thoroughly cleaned using appropriate methods.

REASSEMBLY

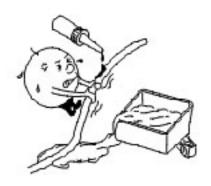

Standard values, such as torques and certain adjust ments, must be strictly observed in the reassembly of all parts. If removed, the following parts should be replaced with new ones:

- 1.Oil seals
- 2.O-rings
- 3.Cotter pins
- 4.Gaskets
- 5.Lock washers
- 6. Nylon nuts

DEPENDING ON LOCATION:


- 1. Sealant should be applied or new gaskets installed.
- 2.Oil should be applied to the moving components of parts.
- 3. Specified oil or grease should be applied at the appropriate locations (such as oil seals) before reassembly.

GI-5 GENERAL INFORMATION


ADJUSTMENTS

Use appropriate gauges and/or testers when making adjustments.

RUBBER PARTS AND TUBING

Prevent gasoline or oil from contacting rubber parts or tubing.

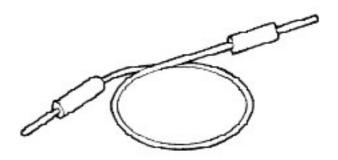
ELECTRICAL TROUBLESHOOTING TOOLS (TEST LIGHT)

The test light, as shown in figure, uses a 12V bulb. The two lead wires should be connected to probes.

The test light is used for simple voltage checks and in checking for short circuits.

CAUTION

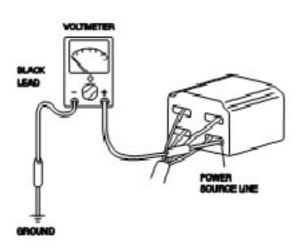
When checking the engine control module (ECM), never use a bulb exceeding 3.4W.



ELECTRICAL TROUBLESHOOTING TOOLS (JUMPER WIRE)

The jumper wire is used for testing by shorting across switch terminals ground connections.

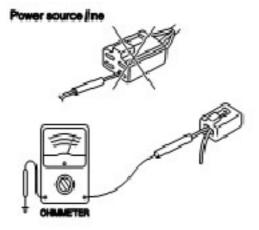
CAUTION


Do not connect a jumper wire from the power source line to a body ground. Such a connection may cause damage to harnesses or electronic components.

GI-6 GENERAL INFORMATION

VOLTMETER

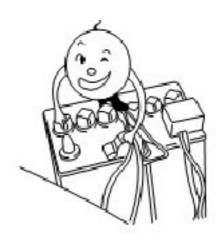
The DC voltmeter measures circuit voltage. A voltmeter with a range of 15V or more is used by connecting the positive (+) probe (red lead wire) to the point where voltage is be measured, and the negative (-) probe (black lead wire) to a bodyground.



OHMMETER

The ohmmeter is used to measure the resistance between two points in circuit and also to check for continuity and the diagnosis of short circuits.

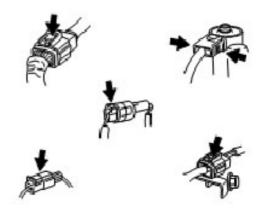
CAUTION


Do not attempt to connect the ohmmeter to any circuit in which voltage is applied. Such a con nection may damage the ohmmeter.

ELECTRICAL PARTS

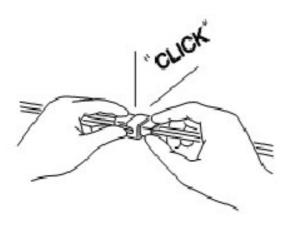
BATTERY CABLE

Before disconnecting connectors or replacing electrical parts, disconnect the negative battery cable.

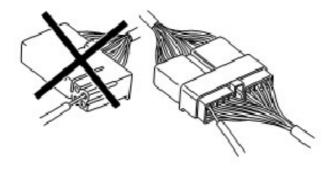


CONNECTORS(REMOVAL OF CONNECTOR)

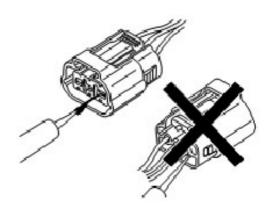
1. Never pull on the wiring harness when disconnecting connectors.


2.Connectors can be removed by pressing or pulling lock lever.

GI-7 GENERAL INFORMATION


CONNECTORS (LOCKING A CONNECTOR)

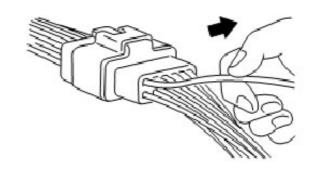
Listen for a click when locking connectors. This sound indicates that they are securely locked.



CONNECTORS (INSPECTION)

1. When a tester is used to check for continuity or to measure voltage, insert tester probe from wire harness side.

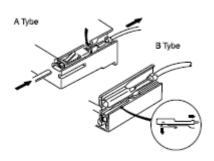
2.Check terminals of waterproof connectors from connector side because they cannot be accessed from harness side.



NOTE

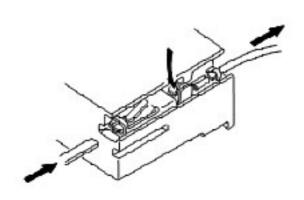
- Use a fine wire to prevent damage to the terminal.
- Do not damage the terminal when inserting the tester lead

TERMINALS (INSPECTION)


Pull lightly on individual wires to ensure that they are secured in the terminal.

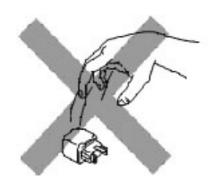
REPLACEMENT OF TERMINALS

Use appropriate tools to remove terminal as shown. When installing the terminal, insert it until it locks securely.

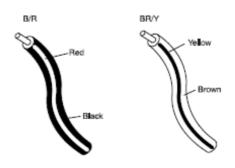

FEMALE

Insert a thin piece of metal from the terminal side of the connector, and then, with the terminal locking tab pressed down, pull the terminal out of the connector.

MALE

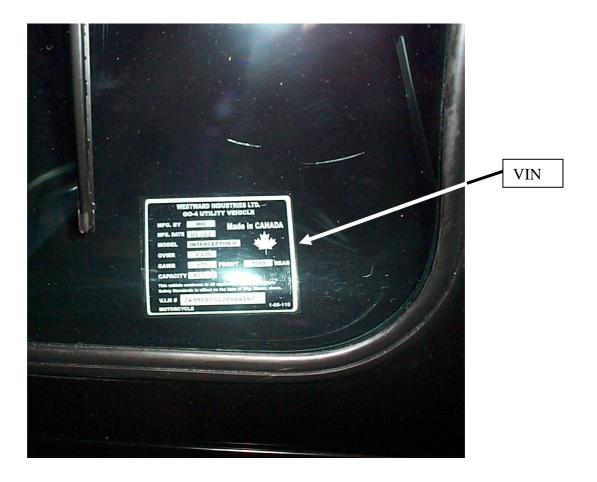

Follow the same procedure as female-type terminal.

SENSORS, SWITCHES, AND RELAYS


Always handle sensors, switches and relays carefully.

Do not drop them or accidentally strike them against other parts.

WIRING COLOR CODES


Two-color wires are indicated by a two-color code symbol. The first color indicates the base color of the wire; the second color indicates the color of the stripe.

CODE	COLOR	CODE	COLOR
В	BLACK	Р	PINK
BR	BROWN	R	RED
G	GREEN	S	SILVER (LIGHT BLUE)
GY	GRAY	T	TAWNY
L	BLUE	V	VIOLET
LG	LIGHT GREEN	W	WHITE
0	ORANGE	Y	YELLOW

GI-9 GENERAL INFORMATION

VEHICLE IDENTIFICATION NUMBER LOCATION

GI-10 GENERAL INFORMATION

VEHICLE IDENTIFICATION NUMBER DESCRIPTION

Sample VIN: $\frac{2W9}{(1)}$ $\frac{M}{(2)}$ $\frac{P}{(3)}$ $\frac{H}{(4)}$ $\frac{55}{(5)}$ $\frac{7}{(6)}$ $\frac{2}{(7)}$ $\frac{P}{(8)}$ $\frac{044}{(9)}$ $\frac{XXX}{(10)}$

- 1- "2W9" as assigned by the Motor Vehicle Manufacturer's Association
- 2- "M" Type of cycle: (M) for motorcycle
- 3- "P" Type of GO-4: (P) for police
- 4- "H" Type of engine: (H) for Hyundai
- 5- "55" Net brake horse power: 55hp
- 6- "7" Check digit
- 7- "2" Vehicle model year: (2) for 2002 as per tables
- 8- "P" Plant of manufacture: (P) for Portage la Prairie
- 9- "044" (044) as assigned by the Motor Vehicle Manufacturers Association
- 10- "XXX" The numbers sequentially assigned by the manufacturer in the production process

Table – Vehicle Model Year

Year	Code	Year	Code
1991	М	2001	1
1992	Ν	2002	2
1993	Р	2003	3
1994	R	2004	4
1995	S	2005	5
1996	T	2006	6
1997	V	2007	7
1998	W	2008	8
1999	Х	2009	9
2000	Y	2010	Α

ENGINE IDENTIFICATION NUMBER LOCATION (GASOLINE)

ENGINE IDENTIFICATION NUMBER DESCRIPTION

MODEL	1	2	3	4	5	6	7	8	9	10	11
EPSILON ENGINE											
(1.1)	G	4	Н	G	4	0	0	0	0	0	1

1: Engine fuel

-G = Gasoline

2: Engine range

-4= 4 Cycle 4 cylinder

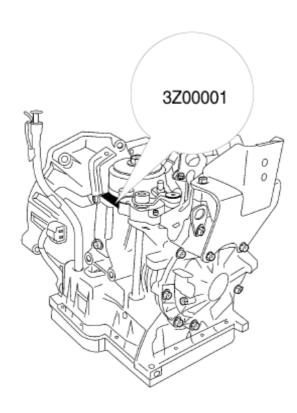
3: Engine development order

-H = Epsilone Engine

4: Engine capacity

-G = 1,086cc

5: Production year


-6 = 2006, 7 = 2007

6- 11 = Engine production sequence number

-000001~ 999999

GI-12 GENERAL INFORMATION

AUTOMATIC TRANSAXLE IDENTIFICATION NUMBER LOCATION

AUTOMATIC TRANSAXLE IDENTIFICATION NUMBER DESCRIPTION

3. Production sequence number

- 1. Production year
- -6 = 2006
- -7 = 2007
- -8 = 2008
- 2. Production month
- $-1 \sim 9 = 1 \text{ month } \sim 9 \text{ month}$
- -X = 10 month
- -Y = 11 month
- -X = 12 month

GI-13 GENERAL INFORMATION

LIFT SUPPORT POINT

- 1. Place the lift blocks under the support points as shown in the illustration.
- 2. Raise the hoist a few inches and rock the vehicle to be sure it is firmly supported.

3. Raise the hoist to full height to inspect the lift points for secure support.

Place Jack In The Center Of Front Cross Tube Or On Either Side Of The Rear Subframe

GI-14 GENERAL INFORMATION

TOWING

If the vehicle needs to be towed, a flat-bed method is recommended.

CAUTION

Never tow the vehicle by the method of a suspension (front or rear) lift.

GI-15 GENERAL INFORMATION

ENGLISH/METRIC CONVERSION TABLE

Multiply	by	to get equivalent number or :		Multiply	by	to get equivalent number or :
	Length				Acceleration	
Inch (in)	25.4	millimeters (mm)		Foot/sec2	0.3048	meter/sec2 (m/s2)
Foot (ft)	0.3048	meters (m)		Inch/sec2	0.0254	meter/sec2 (m/s2)
Yard	0.9144	meters (m)			Torque	
Mile	1.609	kilometers (km)		Inch-pound	0.11298	newton-meters (N·m) newton-meters
				Foot-pound	1.3558	(N·m)
	Area				Power	
				Horsepower		
Inch2 (in2)	645.2	millimeters2 (mm2)		(HP)	0.746	kilowatts (kw)
	6.45	centimeters2 (cm2)		Davis da /ia ab 0	Pressure	
Foot (ft2)	0.0929	meters2 (m2)		Pounds/inch2 (psi)	6.895	kilopascals (kPa)
Yard	0.0323	meters2 (m2)		(psi)	0.095	Kilopascais (Ki a)
Talu	Volume	metersz (mz)			Energy	
Inch3 (in3)	16387	mm3		Foot-pound	1.3558	joules (J)
mons (ms)	16.387	cm3		Kilowatt-hour	3,600,000	joules (J)
	0.0164	liters (I)		Kilowatt-Houl	3,000,000	joules (3)
Quart (qt)	0.9464	liters (I)				
Gallon	3.7854	liters (I)				
Yard	0.7646	meters3 (m3)				
Talu	Mass	meterso (mo)			Fuel performan	.00
Pound (lb)	0.4536	Kilograms (kg)		Miles/gal (mpg)	0.4251	kilometers/liter (km/l
Ton	907.18	Kilograms (kg)		willes/gai (mpg)	0.4251	Kilometers/liter (Kili/i
1011	Force	Kilograms (kg)			Velocity	
	Force			Miles/hour	velocity	kilometers/hour
Kilogram	9.807	newtons (N)		(mph)	1.6093	(km/h)
Ounce (oz)	0.278	newtons (N)		,		,
Pound (lb)	4.448	newtons (N)				
` ,		,	·			
			Temperature			
To convert f temperature temperature, u	to celsius					elsius temperature to perature, use formula:
C = 5/9 (_	9/5 C + 32

GI-16 GENERAL INFORMATION

UNITS

ft-lb or in-lb (N-m)	Torque
rpm	Rotational speed
Α	Amperes
V	Volts
	Resistance (OHMS)
psi (kPa)	Pressure
inHg (mmHg)	Pressure (usually negative vacuum)
W	Watts (electrical power)
US qt (liters)	Volume
in (mm)	Length

ABBREVIATIONS

ABDC	 After bottom dead center
ABS	Anti-locking brake system
A/C	 Air conditioner
ACC	 Accessories
A/T	 Automatic transaxle
ATDC	 After top dead center
ATF	 Automatic transmission fluid
BBDC	 Before bottom dead center
BTDC	 Before top dead center
CMP	 Camshaft position center
CKP	 Crankshaft position center
DIS	 Distributorless ignition system
DLC	 Data link connector
DOHC	 Dual overhead Camshaft
EBD	 Electronic brake-force
	 distribution
ECM	 Engine control module
ECT	 Engine coolant temperature
E/L	 Electrical load
EX	 Exhaust
GND	 Ground
HLA	 Hydraulic lash adjuster
HO2S	Heated oxygen sensor
IAT	 Intake air temperature
IGN	 Ignition
IN	 Intake
INT	 Intermittent
	 -

IAC	Idle air control
LH	Left hand
М	Motor
MAF	Mas air flow
MIL	Malfunction indicator light
M/S	Manual steering
M/T	Manual transaxle
OBD	On-board diagnosis
OFF	Switch off
ON	Switch on
PCV	Positive crankcase ventilation
P/S	Power steering
PRC	Pressure regulator control
P/W	Power window
RH	Right hand
SFI	Sequential fuel injection
	system
SST	Special service tool
SW	Switch
TCM	Transaxle control module
TCS	Traction control unit
TDC	Top dead center
TNS	Tail number side
TPS	Throttle position sensor
TWC	Three way catalyst
WU-	Warm-up three-way catalyst
TWC	

GI-17 GENERAL INFORMATION

MAINTENANCE SCHEDULE

SCHEDULE 1 - NORMAL MAINTENANCE

The Regular Maintenance Schedule should be followed if the vehicle is generally driven on a daily basis for more than 10 miles (16 km) and NONE OF THE CONDITIONS SHOWN IN THE SEVERE MAINTENANCE SCHEDULE APPLY TO DRIVING HABITS.

Items marked with a (*) are for emission control service.

First 5,000 miles (160 hours)

Change oil in front fork assembly and inspect seals.

Every 5,000 miles (160 hours)

• Change engine oil and replace oil filter. *

Every 10,000 miles (320 hours)

- Rotate tires and adjust air pressure.
- Inspect air cleaner element. *

Every 15,000 miles (500 hours)

· Change oil in front fork assembly and inspect seals.

Every 30,000 miles (1000 hours)

- · Replace spark plugs and spark plug wires. *
- Replace fuel filter.
- Replace air cleaner element. *
- Change automatic transmission fluid.
- Change engine coolant at above interval or every 36 months, whichever comes first.
- Change brake fluid.
- Inspect valve clearance. *
- Inspect cooling system, hoses and clamps.
- Inspect alternator and A/C compressor belts. *
- Inspect engine timing belt.
- Inspect fuel lines and hoses. *
- Inspect rear wheel drive shafts, CV joints and boots.
- Inspect front and rear disc brake pads and disc rotors as well as lines and hoses.
- Inspect front fork assembly.
- Inspect steering operation and linkage.
- Inspect bolts and nuts on chassis and body.

Every 60,000 miles (2000 hours)

- Replace engine timing belt. Failure to replace timing belt may result in damage to engine. *
- · Repack front wheel bearings.
- Inspect rear wheel bearings.

GI-18 GENERAL INFORMATION

SCHEDULE 2 - SEVERE MAINTENANCE

The Severe Maintenance Schedule should be followed if the vehicle owner's driving habits include one or more of the following:

- 1. Short trips of less than 10 miles (16 km).
- 2. Operating when outside temperatures remain below freezing.
- 3. Operating during hot weather in stop-and-go "rush hour" traffic.
- 4. Extensive idling, such as police or door-to-door service.
- 5. Operating in extremely humid climates.
- 6. Driving in severe dust conditions.
- 7. Driving in areas where road salt or other corrosives are used.
- 8. Driving on rough and/or muddy roads.
- 9. Operating in hilly areas or under high loads.

Items marked with a (*) are for emission control service.

Every 2,500 miles (80 hours)

· Change engine oil and replace oil filter.*

First 5,000 miles (160 hours)

Change oil in front fork assembly and inspect seals.

Every 5,000 miles (160 hours)

- Rotate tires and adjust air pressure.
- Inspect air cleaner element. *

Every 15,000 miles (500 hours)

- Replace air cleaner element. *
- · Change automatic transmission fluid.
- · Change brake fluid.
- Change oil in front fork assembly and inspect seals.
- Inspect valve clearance. *
- · Inspect cooling system, hoses and clamps.
- Inspect alternator and A/C compressor belts. *
- Inspect engine timing belt. *
- Inspect fuel lines and hoses. *
- Inspect rear wheel drive shafts, CV joints and boots.
- Inspect front and rear disc brake pads and disc rotors as well as lines and hoses.
- Inspect front fork assembly.
- Inspect steering operation and linkage.
- Inspect bolts and nuts on chassis and body.

GI-19 GENERAL INFORMATION

Every 30,000 miles (1000 hours)

- Replace spark plugs and spark plug wires. *
- Replace fuel filter. *
- Change engine coolant at above interval, or every 36 months, whichever comes first.
- Repack front wheel bearings.
- Inspect rear wheel bearings.

Every 60,000 miles (2000 hours)

• Replace engine timing belt. Failure to replace timing belt may result in damage to engine. *